Smoothed Particle Hydrodynamics: Turbulence and MHD
نویسندگان
چکیده
In this paper we discuss recent applications of the Smoothed Particle Hydrodynamics (SPH) method to the simulation of supersonic turbulence in the interstellar medium, as well as giving an update on recent algorithmic developments in solving the equations of magnetohydrodynamics (MHD) in SPH. Using high resolution calculations (up to 134 million particles), we find excellent agreement with grid-based results on a range of measures including the power spectrum slope in both the velocity field and the density-weighted velocity ρv, the latter showing a Kolmogorov-like k scaling as proposed by Kritsuk et al. (2007). We also find good agreement on the statistics of the Probability Distribution Function (PDF) and structure functions, independently confirming the scaling found by Schmidt, Federrath & Klessen (2008). On Smoothed Particle Magnetohydrodynamics (SPMHD) we have recently wasted a great deal of time and effort investigating the vector potential as an alternative to the Euler potentials formulation, in the end concluding that using the vector potential has even more severe problems than the standard (B-field based) SPMHD approach.
منابع مشابه
Sub-Alfvénic Non-Ideal MHD Turbulence Simulations with Ambipolar Diffusion: I. Turbulence Statistics
Most numerical investigations on the role of magnetic fields in turbulent molecular clouds (MCs) are based on ideal magneto-hydrodynamics (MHD). However, MCs are weakly ionized, so that the time scale required for the magnetic field to diffuse through the neutral component of the plasma by ambipolar diffusion (AD) can be comparable to the dynamical time scale. We have performed a series of 256 ...
متن کاملMagnetic fields and Turbulence in Star Formation using Smoothed Particle Hydrodynamics
Firstly, we give a historical overview of attempts to incorporate magnetic fields into the Smoothed Particle Hydrodynamics method by solving the equations of Magnetohydrodynamics (MHD), leading an honest assessment of the current state-of-the-art in terms of the limitations to performing realistic calculations of the star formation process. Secondly, we discuss the results of a recent compariso...
متن کاملNumerical Investigation of Vertical and Horizontal Baffle Effects on Liquid Sloshing in a Rectangular Tank Using an Improved Incompressible Smoothed Particle Hydrodynamics Method
Liquid sloshing is a common phenomenon in the transporting of liquid tanks. Liquid waves lead to fluctuating forces on the tank wall. If these fluctuations are not predicted or controlled, they can lead to large forces and momentum. Baffles can control liquid sloshing fluctuations. One numerical method, widely used to model the liquid sloshing phenomena is Smoothed Particle Hydrodynamics (SPH)....
متن کاملSmoothed Particle Magnetohydrodynamics – II. Variational principles and variable smoothing-length terms
In this paper we show how a Lagrangian variational principle can be used to derive the Smoothed Particle Magnetohydrodynamics (SPMHD) equations for ideal Magnetohydrodynamics (MHD). We also consider the effect of a variable smoothing length in the Smoothed Particle Hydrodynamics (SPH) kernels, after which we demonstrate by numerical tests that the consistent treatment of terms relating to the g...
متن کاملInvestigating the Third Order Solitary Wave Generation Accuracy using Incompressible Smoothed Particle Hydrodynamics
This paper examines the generation and propagation of a Third order solitary water wave along the channel. First the Incompressible Smoothed Particle Hydrodynamics (ISPH) numerical method is described and the boundary condition handling method is presented. The numerical model is then used to simulate solitary wave propagation along the fixed depth channel. The numerical results are compared wi...
متن کامل